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of fit regions later on in the search process, conventional
GAs tend to face difficulty in solving certain kinds of
problem, such as highly multimodal functions, functions with
high levels of epistasis, and deceptive functions (Goldberg,
1989; Whitley, 1991). On such problems, typical premature
takeover of exploitation occurs in conventional GAs, before
the early exploration stage has had a chance to set the
population in the right direction.  Many kinds of modified
GA have been proposed to address this and related issues,
such as CHC (Eshelman, 1991), mGA (Goldberg et al.,
1990), delta coding (Mathias and Whitley, 1995) and fGA
(Tsutsui et al., 1993; 1997b). These efforts have mainly been
applicable to binary or Gray coded chromosomes.
        In recent years, several researchers have concentrated
on using real-valued genes. It is reported that, for some
problems, real-valued encodings and associated techniques
outperform  conventional bit string approaches (Davis, 1991;
Eshelman and Schaffer, 1993; Wright, 1991; Janikow and
Michalewicz, 1991; Radcliffe, 1991). Although real-coded
GAs show promise for some problems, they also find it hard
to solve highly epistatic multimodal problems. As with any
GA, one approach towards dealing with this issue is to
concentrate on better ways to balance the degrees of
exploration and exploitation at different stages of the search
process.
        One novel approach to this problem is to use separate
populations for exploration and exploitation. Preliminary
ideas along these lines were reported in Tsutsui et al (1997a),
which presented a bi-population GA scheme (bGA). The
bGA has two populations; one of these populations, the
explorer sub-GA, tries mainly to explore the whole search
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Abstract

We introduce the concept of a bi-population scheme
for real-coded GAs (bGAs) consisting of an
explorer sub-GA and an exploiter sub-GA. The
explorer sub-GA mainly performs global
exploration of the search space, and incorporates a
restart mechanism to help avoid being trapped at
local optima. The exploiter sub-GA performs
exploitation of fit local areas of the search space
around the neighborhood of the best-so-far solution.
Two types of bGA are presented, aimed at
addressing different classes of problems. We also
explore a method for adaptive load balancing
between the two sub-GAs within a bGA, which uses
knowledge of the number of restarts occurring in
the explorer sub-GA. The proposed technique
exhibits performance significantly superior to
standard GAs on two complex highly multimodal
problems.

1  Introduction

A key aspect of a Genetic Algorithm (GA) is that it maintains
a population of candidate solutions that evolve over time
(Goldberg, 1989; Grefenstette, 1992). The population allows
the GA to continue to explore a number of regions of the
search space that appear to be associated with high
performance solutions. As early exploration of the search
space gradually gives way to exploitation of a small number
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space and maintain a useful degree of global diversity, while
the other population, the exploiter sub-GA, exploits the
neighborhood of the best solution obtained so far. This paper
reports on continuing experimentation with this idea in a
more systematic and elaborate manner. We report on the
development of two slightly different versions of the bGA
scheme, aimed at dealing with different kinds of application.
The scheme is shown to be successful in finding global
optima for two difficult multimodal complex function
optimization problems.
        The paper is organized as follows. We describe the basic
evolutionary algorithm model, as used in the two sub-GAs
of the bGA, in Section 2. In Section 3, two types of bGA
model are introduced. Then, in Section 4  empirical results
and their analysis are given. Finally, concluding remarks are
made in Section 5.

2  Basic Evolutionary Model

The bGA is of course not restricted to a particular underlying
evolutionary model, but we will briefly describe here the
model used in this study. Evolution in both the explorer and
the exploiter sub-GAs is similar to that of CHC (Eshelman,
1991) and (µ+λ)-ES (Schwefel, 1981). Let the  population
size be N, and let the population at time t be represented by
P(t). The population P(t+1) is produced as follows: A set of
N/2 pairs of chromosomes is copied from P(t) to I(t)
(intermediate population at time t). Genetic operators are
applied to the chromosomes in I(t), generating N offspring
which are placed in I'(t). Rank-based selection is then used
to select N individuals  from the 2N in P(t) and I'(t) to form
P(t+1). Elitism is employed to make sure that the best
solution so far is always included in P(t+1).

3  Models of Bi-population GAs

In this section we describe the models for two slightly
different bi-population GAs, the relations and differences
between them, and the problem types they are aimed to solve.
Also we discuss the relationship of the present work to
existing literature.

3.1 Components of bGAs

As illustrated in Fig. 1, a bGA consists of three components:
(i) an explorer sub-GA, (ii) an exploiter sub-GA and (iii) a
monitor. The explorer sub-GA explores the whole search
space, and the exploiter sub-GA searches the neighborhood

of the best solution obtained so far. If certain pre-specified
convergence conditions are satisfied before completion of
search, the explorer sub-GA is restarted. In general, the bGA
can be in different well defined states, depending on the
current activity of the two sub-GAs. The monitor observes
the current search process and makes decisions about the
following: (a) when to restart the explorer sub-GA, (b)
transitions between different bGA states, and (c) adaptive
load balancing between the sub-GAs.

3.2 Types of bGAs and Their Dynamics

In this subsection we consider two types of bGA models
aimed at different types of application.

3.2.1 Type I

Fig. 2 shows the state transition diagram of a Type I bGA.
When search starts, only the explorer sub-GA is used. We
call this state E0-STATE. When the pre-specified restart
condition is satisfied, all the individuals of the explorer sub-
GA are copied to the exploiter sub-GA and the explorer sub-
GA is restarted after randomly re-initializing all the
individuals and incrementing the restart counter (which is
initially set to zero). Thus the best so far solution is
maintained in the exploiter sub-GA. The exploiter sub-GA
then continues search with the old population members. We
call this state EE-STATE.
        In EE-STATE two sub-GAs are run concurrently.
During this concurrent running process, whenever the restart
condition is satisfied, the explorer sub-GA restarts and the

Explorer sub-GA

Exploration with
restart strategy

Expoitation for 
precise search

Monitor

Exploiter sub-GA

to control 
  - restart timing
  - state transition
  - adaptive load balancing

Fig. 1 Block diagram of  a bi-population GA
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restart counter r is incremented by one. On the other hand,
for situations where the best solution of the explorer sub-
GA is better than the best solution of the exploiter sub-GA,
the current exploiter sub-GA becomes useless and the state
transition from EE-STATE to E0-STATE occurs.
        These state transitions continue until the termination
condition is satisfied. In the present work, restart of the
explorer sub-GA is done only if the current best fitness value
is improved by more than the pre-specified value ∆f (say)
during the last K

h
 (say) generations.

        As two sub-GAs run concurrently in the EE-STATE,
questions naturally arise about computational time-sharing,
whether or not we assume a serial implementation.
Intuitively, at the initial stage of the search more time should
be given to the explorer sub-GA, and towards the final stages
of search, more time should be allowed to the exploiter sub-
GA.
        We can use the restart counter r as a parameter to help
implement these intuitions as a model of adaptive load
balancing between the two sub-GAs. When r is small (there
have not been many restarts) we give more time to the
explorer sub-GA; when r is larger (the explorer has been
restarted several times, and so it is perhaps a good idea to
start concentrating on exploitation) we give more time to
the exploiter sub-GA. Let g(r) be the fraction of time given
to the explorer sub-GA, and so 1-g(r) is given to the exploiter
sub-GA. We use the following function for calculating g(r).
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. As shown in Fig. 3, when r

is less than or equal to r
1
, the bGA searches mainly in the

exploration mode. When r exceeds r
2
, the algorithm searches

0.5

1

0

Kr

r1 r2

restart counter r

g(
r)

Fig. 3 Fraction of time given to explorer sub-GA

Fig. 2 State transition diagram of Type I bGA

Explorer sub-GA Expoiter sub-GA

E0-STATE

Explorer sub-GA Expoiter sub-GA

EE-STATE

START

END

best so far solution is updated 
                        by explorer sub-GA /
- remove the exploiter sub-GA

restart condition /
-  re-initialize all individuals of the explorer sub-GA
-  r  = r +1

restart condition / 
-  copy all individuals from the explorersub-GA
   to the exploiter sub-GA
-  re-initialize all individuals of the explorer sub-
   GA
-  r = r +1

-  r = 0



Proceedings of the 7th International Conference on Genetic Algorithms (ICGA-97), pp. 238-245

mainly in exploitation mode. When r is between r
1
 and r

2
,

time is shared by both the sub-GAs depending on the value
of r.
        The present model is suitable for problems where we
have no knowledge about the optimal or target value.

3.2.2 Type II

There are many real-world applications where we either
know the optimal fitness value, or we wish to reach a known
target value. For example, in curve-fitting applications we
are aiming to minimize error, and so targeting a fitness value
of 0.  Or, in design optimization, we are aiming to determine
design parameters which satisfy known specifications
(Tsutsui et al., 1993, 1997b). The bGA would presumably
benefit greatly from knowledge of a target value, using this

knowledge to better control and direct state transitions and
adaptive load balancing. Fig. 4 shows the schematic
representation of a Type II bGA which makes use of this
knowledge. The target fitness value is used to avoid over-
exploration when the search is already near enough to the
target to be able to reach it (hopefully) by exploitation. Let
f
threshold

 be a specified threshold value used to test the present
status of the search process. Now if the best so far
performance value is less than f

threshold
, we assume that the

search is proceeding in the right direction and there is no
further need for exploration. In this case, the state transition
to 0E-STATE occurs. In 0E-STATE, only the exploiter sub-
GA is used and search proceeds until other termination
conditions are satisfied. The load balancing strategy between
the two sub-GAs is identical with that of the Type I bGA,
but in future work we will examine the use of f

threshold
 within

Fig. 4 State transition diagram of Type II bGA
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-  re-initialize all individuals of the explorer sub-GA
-  r = r +1

restart condition / 
-  copy all individuals from the explorersub-GA
   to the exploiter sub-GA
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the load balancing strategy.

3.3 Relation to Existing Work

Restart strategies have been discussed elsewhere (Eshelman,
1991; Mathias and Whitley, 1995). The delta coding method
used by Mathias and Whitley (1995) is an iterative genetic
search strategy that sustains search by periodically re-
initializing the population. It also remaps the search
hyperspace with each iteration and it is reported that it shows
good performance especially when used with Gray coding.
The CHC method by Eshelman (1991) is a safe search
strategy where restart of the search process is done if it gets
stuck at local optima by re-initializing the population with
individuals generated by mutating the best solution obtained
so far (also keeping the best one). In another study, Tsutsui
et al. (1993, 1997b) reported a search space division and
restart mechanism so as to avoid getting stuck in local traps.
        Although the use of a restart strategy is a feature of the
bGA, its main purpose is to maintain a suitable balance
between exploration and exploitation during the search
process by means of two populations. Multiple population
models have been described before (Tanese 1989; Whitley
et al. 1990; Gorges-Schleuter, 1991), and are often the choice
of underlying GA implementation in application oriented
papers, however the populations are not assigned different
roles. In contrast, the most closely related previous work
appears to be that on memetic algorithms (Moscato and
Norman, 1992; Radcliffe and Surry, 1994) and other
hybridizations of a GA with local search. In these approaches,
GA exploration is balanced by exploitation of every
chromosome via local search, essentially incorporating local
search into the evaluation function. In a memetic algorithm,
exploration and exploitation remain tightly interlocked and
concurrent, with overall load balancing between these two
stages of search and still subject to the vagaries of standard
GA dynamics. The bGA  can be seen as a (rather radical)
variation on such an idea, in which only very few
chromosomes are subject to local search, and in which the
local search is actually performed by a GA. In addition, a
monitoring mechanism makes careful decisions about
concentration of effort between the two stages.

4 Empirical Study

In this section, we show some experimental results to confirm
the utility of the proposed scheme using two highly
multimodal test functions. Initially,  we will first discuss the

exact models of the explorer and exploiter sub-GAs.

4.1 Explorer and Exploiter sub-GA Models

The basic evolutionary model used in this study is described
in Section 2. Here, we describe the genetic operators and
the control parameters for the explorer and the exploiter sub-
GAs.
        Several crossover operators have been proposed in the
literature (Wright, 1991; Eshelman and Schaffer, 1993; Ono,
et al., 1996) for real coded GAs. BLX-α (Eshelman and
Schaffer, 1993) as shown in Fig. 5 is one of them and is
reported to work well on a wide range of problems. In this
study BLX-α is commonly used for both the sub-GAs. BLX-
α creates children of parents p

1
 and p

2
 which lie on the line

joining the parents, but not between them, as shown in Fig.
5.
        With regard to mutation, several mutation methods such
as creep mutation (Davis, 1991) have been proposed. For
the explorer sub-GA, a coarse-grained mutation method, and
for the exploiter sub-GA a fine-grained mutation method,
seem to be suitable choices. However, to use different
mutation methods for different sub-GAs will increase the
number of control parameters to be tuned. Instead, we use
the following relative mutation method. In this method, the
distance | I | (see Fig. 5) between parents is multiplied by M
(M>1.0) with mutation probability. This allows coarse
mutation in the explorer sub-GA because the distance
between parents will be relatively large, and fine mutation
in the exploiter GA where distances between parents will be
relatively small.
         For efficient exploitation, intuition suggests that the
population size of the exploiter sub-GA should be rather less
than N, which is the population size of the explorer sub-GA.
We therefore examined the effects of different population
sizes for the exploiter sub-GA, namely: N, N/2, N/4 and N/

Fig. 5 BLX-αααα

p1 p2

 I αI  αI

BLX-α uniformly picks new individuals 
with values that lie in [I-α I,  I+α I], 
where p1 and p2 are two parents
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Fig. 6 Landscape of function f fms on w2-w3 space

w2

w3

x1
x2

Fig. 7 Landscape of function fGriewank on x1-x2 space

10.
        The following parameters and experimental conditions
were used. The crossover operator was BLX-α with α =
0.5. Mutation probability was 0.1 and M = 3.0. The
population size of the explorer sub-GA (N) is fixed to 100.
As regards the restart conditions of the explorer sub-GA, K

h

was 50, and ∆f was 0.1. The number of simulations used for
each experiment was 10. The values of K

r
, r

1
 and r

2
 of

Equation (1) were 0.7, 5 and 6, respectively.

4.2 Test Functions

The test functions used are as follows:

a) FMS (Frequency Modulation Sounds) parameter
identification problem: f

fms
 (Tsutsui et al., 1993, 1997b).

Here the problem is to specify 6 parameters (a
1
, w

1
, a

2
, w

2
,

a
3
, w

3
) of the FM sound model represented by

y t a w t a w t a w t( ) sin( sin( sin( ))),= + +1 1 2 2 3 3θ θ θ (2)

with θ = 2π/100. The function f
fms

 is defined as the summation
of square errors between the evolved data and the model
data as follows:

fmsf y t y t
t

= −∑
=

2
0

0

100

( ( ) ( ) ) ,                    (3)

where the model data are given by the following equation:

0

1 0 5 0 1 5 4 8 2 0 4 9

y t

t t t

( )

. sin( . . sin( . . sin( . ))).

=

− +× × ×θ θ θ  (4)
Each parameter is in the range -6.4 to 6.35. The maximum
number of trials was set to 160,000. This function is a highly
complex multimodal (Fig. 6) function having strong epistasis,
with minimum value f

fms
 = 0. f

threshold
=0.0001 is assumed.

b) Griewank function: f
Griewank

 (Torn and Zilmskas, 1989).
This function is defined as follows:

  Griewank
f x x i

i
i

i
i

= ∑ − ∏ +
= =

2

1

10

1

10

4000 1/ cos( / ) .          (5)

parameter x
i
 is in the range -512 to 511. Maximum number

of trials was set to 100,000. This function has its global
minimum f

Griewank
 = 0 at x

i
 = 0, i = 1, ..., 10. This function is

also highly multimodal and epistatic (Fig. 7). f
threshold

=0.0001
is assumed here also.

4.3 Results and Analysis

Fig. 8 shows the mean best functional values achieved for

the different approaches on  f
fms

 achieved by the two types
of bGA. A single pool GA without restart (non-bGA) is also
tested for baseline comparison. Comparing the bGAs and
the non-bGA we can see that the bGAs show much better
performance. Comparing Type I and Type II bGAs, Type II
bGAs showed better performance than Type I bGAs. This
confirms the utility of Type II bGAs when we solve problems
with a known target value. When the performance value of
Type II bGAs becomes within the f

threshold
 value, it rapidly

converges and approaches the global optimum value with
high precision, since it can concentrate on exploitation with
the exploiter sub-GA only. As regard to the population size
of the exploiter sub-GA, N/2 seemed to deliver the best
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Fig. 9 Mean best functional value of fGriewank

fGriewank

results. Smaller population sizes for the exploiter sub-GA
seemed very prone to entrapment in local optima, particularly
in the f

fms
 case. This is probably because f

fms
 has many local

optima around the global optimal point (see Fig. 6), rendering
local search with a rather small population size rather
vulnerable to failure.
        Fig. 9 shows the mean best functional values achieved
for the different approaches on f

Griewank
. For this function also,

the non-bGA showed poorer performance. Since this function
is little easier than f

fms
, there is no big difference between the

performance of Type I and Type II bGAs, although Type II
bGAs were perhaps slightly better. As regards population
size of the exploiter sub-GA, N/2 (= 50) again showed the
best performance. Resizing the population to lesser values
is seen to trap the search scheme to local optima again,
corroborating the earlier findings.

5 Conclusions

The basic concept of a bi-population scheme for real-coded
GAs which consists of an explorer sub-GA and an exploiter
sub-GA is introduced. The main tasks for the sub-GAs are
different; one mainly does exploration, and avoids being
trapped in local optima by means of restart mechanism; and
the other does exploitation by concentrating within the
neighborhood of the best so far solution. An adaptive load
balancing mechanism which allocates time between the
explorer and exploiter sub-GAs is performed by a monitor
which supervises the search process. The monitor also
controls the state transitions during the search process. Two
different bi-population GAs are explored and relations and
differences between them and the problem types they are
aimed to solve are briefly presented.
        The effectiveness of the proposed technique is shown
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by solving two complex multimodal function optimization
problems, although further experimentation is needed to
better test the performance of the bGA relative to other GAs,
hillclimbing, and a standard GA with restart, for example.
The explorer sub-GA with a larger population size and the
exploiter sub-GA with a smaller population size showed the
best performance. In the case, the population sizes were 100
and 50 respectively, but optimal sizes are of course likely to
depend very much on the problem at hand and aspects of
global and local fitness landscape structure.
        Many opportunities for further research related to the
present topic exist. More "smart" heuristics to reach 0E-
STATE faster so as to save more time are under investigation.
Strategies to avoid the explorer sub-GA getting trapped by
strong attractors multiple times, employing traditional local
search techniques for the exploiter sub-GA, are yet to be
tried. Evaluating the effectiveness of bGAs on real problems,
comparing them with other multi-population based schemes,
and extending them for permutation problems also remain
to be investigated. Co-evolution of the two sub-GAs will
also yield ideas for future research.
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