
A DISCRETE BINARY VERSION OF THE PARTICLE SWARM ALGORITHM

James Kennedy1 and Russell C. Eberhart2

IBureau of Labor Statistics
Washington, DC 20212
kennedyjim@ bls.gov

2Purdue School of Engineering and Technology
Indianapolis, IN 46202-5 160

eberhart@engr.iupui.edu

ABSTRACT

The particle swarm algorithm adjusts the trajectories
of a population of “particles” through a problem
space on the basis of information about each
particle’s previous best performance and the best
previous performance of its neighbors. Previous
versions of the particle swarm have operated in
continuous space, where trajectories are defined as
changes in position on some number of dimensions.
The present paper reports a reworking of the
algorithm to operate on discrete binary variables. In
the binary version, trajectories are changes in the
probability that a coordinate will take on a zero or
one value. Examples, applications, and issues are
discussed.

1. INTRODUCTION

The particle swarm algorithm (Eberhart and
Kennedy, 1995; Eberhart, Dobbins, and Simpson,
1996; Kennedy and Eberhart, 1995; Kennedy, 1997)
has been introduced as an optimization technique for
use in real-number spaces. A potential solution to a
problem is represented as a particle having
coordinates Xid and rate of change vd in a D-di-
mensional space. Each particle i maintains a record
of the position of its previous best performance in a
vector called pid. An iteration comprises evaluation
of each particle, then stochastic adjustment of Vid in
the direction of particle i’s best previous position
and the best previous position of any particle in the
neighborhood. Neighborhoods can be defined in
innumerable ways: most implementations evaluate a
particle i in a neighborhood consisting of itself,
particle i-1, and particle i+l, with arrays wrapped so
i=l is beside i=N. The variable g is assigned the
value of the index of the particle with the best
performance so far in the neighborhood. Thus in the
original version particles move by the following
formula:

“id = Yid + dPid - Xid) + dPgd - X i d)

where cp is a random positive number generated for
each id, whose upper limit is a parameter of the
system, and:

Xid = Xid + “id

The particle swarm algorithm has been found to be
robust in solving problems featuring nonlinearity and
nondifferentiability, multiple optima, and high
dimensionality through adaptation which is derived
from social-psychological theory (Kennedy, 1997).

2. DISCRETE SPACE

Many optimization problems are set in a space
featuring discrete, qualitative distinctions between
variables and between levels of variables. Typical
examples include problems which require the order-
ing or arranging of discrete elements, as in schedul-
ing and routing problems. Besides these pure
combinatorial problems, researchers frequently cast
floating-point problems in binary terms, and solve
them in a discrete number space. As any problem,
discrete or continuous, can be expressed in a binary
notation, it is seen that an optimizer which operates
on two-valued functions might be advantageous.

The particle swarm works by adjusting trajectories
through manipulation of each coordinate of a
particle. At least some of the success of the algo-
rithm in real numbered functions appears to derive
from the fact that it “overflies” known local optima,
exploring beyond as well as between them. The
immediate question then is, what are the meanings of
concepts such as trajectory, velocity, between, and
beyond, in a discrete space.

In a binary space, a particle may be seen to move to
nearer and farther corners of the hypercube by
flipping various numbers of bits; thus, velocity of the
particle overall may be described by the number of
bits changed per iteration, or the H a m n g distance
between the particle at time f and at r+l. A particle

0-78034053-1/!l7/$10.OO 1997 IEEE
41 04

mailto:eberhart@engr.iupui.edu

with zero bits flipped does not move, while it moves
the “farthest” by reversing all of its binary
coordinates. This does not answer the question,
however, of what corresponds to vi+ in a binary
function, that is, what is the velocity or rate of
change of a single bit or coordinate.

The solution to this dilemma is to define trajectories,
velocities, etc., in terms of changes of probabilities
that a bit will be in one state or the other. Thus, a
particle moves in a state space restricted to zero and
one on each dimension, where eaclh Vid represents
the probability of bit Xid taking the value 1. In other
words, if Vid = 0.20, then there is a twenty percent
chance that Xid will be a one, and an eighty percent
chance it will be a zero. If the previous best
positions have had a zero in that bit, then @id - Xid)
can be reasonably calculated as -1, 0, or +1, and
used to weight the change in probability Vid at the
next step.

In sum, the particle swarm formula:

remains unchanged, except that now p d and Xid are
integers in (0, l } and Vid, since it is a probability,
must be constrained to the interval1 [O.O, 1.01. A
logistic transformation s(Vid) can be used to accom-
plish this last modification. The resulting change in
position then is defined by the following rule:

“id = Vid + (P(Pid - Xid) + HPgd - Xid)

$(rand() < s(vid)) then Xid = 1;
else Xid = 0

where the function S(v) is a sigmoid limiting
transformation and rand() is a quasirandom number
selected from a uniform distribution in [O.O, 1.01.

The continuous-valued particle swarm algorithm also
limited v d by a value V,, which ‘was a parameter
of the system. In the discrete vlersion V,, is
retained, that is, Ivid < V-, but as can be seen, this
simply limits the ultimate probability that bit Xid will
take on a zero or one value. For instance, if
V d 6 . 0 , then probabilities will be limited to
s(Vid), between 0.9975 and 0.0025.. The result of
this is that new vectors will still be tried, even after
each bit has attained its best position. Specifying a
higher V,,, e.g., 10.0, makes new vectors less
likely. Thus part of the function of V,, in the
discrete particle swarm is to set a limit to further
exploration after the population has converged; in a
sense, it could be said to control the ultimate
mutation rate or temperature of the bit vector. Note
also that, while high V,, in the continuous-valued
version increases the range explorad by a particle,
the opposite occurs in the binary version; smaller
V,, allows a higher mutation rate.

3. A CHANGE IN THE MEANING OF
CHANGE OF CHANGE

The revision of the particle swarm algorithm from a
continuous to a discrete operation may be more
fundamental than the simple coding changes would
imply. The floating-point algorithm operated
through a stochastic change in the rate of change of
position. The original

seems very different from
Xid = Xid + Vid

$(rand() < S(vid)) then xid = 1;
else Xid = 0.

The difference of course lies in the interpretation of
the concept of the “change of change” that is central
to the continuous-valued version. In the original,
trajectories were adjusted by altering the velocity or
rate of change of position, as distinguished from
previous algorithms where the actual position of the
particle is adjusted (Goldberg, 1989). In the present
discrete version, however, it appears that with Vid
functioning as a probability threshold, changes in vid
might represent a change in first-order position itself.
As s(Vid) approaches zero, for instance, the
“position” of the particle fixes more probably on the
value 0, with less chance of change.

Trajectory in the current model is probabilistic, and
velocity on a single dimension is the probability that
a bit will change; thus even if Vid should remain
fixed, the “position” of the particle on that
dimension remains dynamic as it flips polarity with
probability following from the value of vid

The probability that a bit will be a one = s(Vid), and
the probability that it will be a zero = 1 - s(Vid).
Further, if it is a zero already, then the probability
that it will change = s(Vid), and if it is a one the
probability it will change = 1 - s(Vid). Thus we can
see that the probability of the bit changing is given
by:

which is equivalent to saying

which is the absolute (nondirectional) rate of change
for that bit given a value of v s Thus change in Yid
is still a change in the rate of change, with a new
interpretation.

PfA) = SfVid) (1 - s(vjd)),

P(A) = s(vid) - s(vid?

4. REPRESENTATIONS AS PROBABILITIES

In the previous version of the particle swarm
algorithm, as in other evolutionary computation

41 05

paradigms, individuals is a population represent
potential problem solutions. Individuals are
evaluated, changed in some way or replaced, and
tested again; adaptation occurs as the fitnesses of
individual problem solutions increase.

In the present method, population members are not
viewed as potential solutions: they are probabilities.
The value of vd for each dimension determines the
probability that a bit Xid will take on one or the other
value, but Xid itself does not have a value until it is
evaluated: the actual position of the particle in D
dimensional space is ephemeral. An individual
particle i with a particular vector vid might have a
different position xid at every iteration. In this way
the particle swarm differs from any optimization
paradigm currently known.

5. IMPLEMENTATION IN A CLASSIC
.TESTBED

De Jong’s (1975) suite of five test functions was
designed to test a carefully constructed set of di-
mensions of performance of an optimizer. Code for
these five functions was provided through the
Internet by William Spears*, and altered for integra-
tion with the present paradigm. In some cases it
appears that the optimum can only be approximated
within several decimal places, due to the imprecision
of the binary encoding.

The functions were run twenty times each, with a
population of 20 and V,, set at 6.0. Graphs show
the mean best performance, measured on every tenth
iteration.

As seen in Figure 1, the particle swarm converged
quickly on the optimum for f l . The target output
value was 78.60, though in any trial the closest the
particle swarm was able to come was 78.599998,
which it found on ten of the twenty trials. It is
presumed that the difference between the found
optimum and the target is due to insufficient
precision in the binary encoding, rather than a failure
of the algorithm to hit the target.

80

5 75
n c.

70

65

f l

Iterations (1 - 200)

On the second function, f2, the particle swarm was
able to attain a best value of 3905.929932, compared
to a given target of 3905.93; again, the difference is
thought to derive from the precision of the encoding,
rather than the algorithm.

F2 is the hardest of the functions for the particle
swarm. The system converged on the best known
optimum four times in this set of twenty. The
hardness of the function might be explained by the
existence of very good local optima in regions which
are distant from the best known optimum. For
instance, the local optimum:

returns a value of 3905.929688, while the vector:

returns 3905.929443, and

returns 3905.924561.

010111111101111000000111

110111101001110111011111

1 1 1 m 1 1 0 0 1 0 1 1 0 0 1 m 1

The best known optimum, returning 3905.929932, is
found at:

110111101110110111101001,
which is a Hamming distance of 12 (in a 24-element
bit string) from the first local optimum given above,
7 from the second (rather close), and 15 from the
third. Thus, there is very little chance that a search
would move from one of the local optima to the
global optimum. This kind of problem is probably
better handled by a genetic algorithm with one- or
two-point crossover, where long blocks of the parent
vector are swapped in their entirety into the child.

41 06

f2 f5

3908

3906

3900

3898

I terations (1 -200)

The third function, f3, is an integer function with a
target value of 55, which was attained on every trial,
as shown in figure 3.

f3

Iterations (1-200)

De Jong’s f4 function introduces gaussian noise to
the function, and was measured as an average over
the entire population, rather than a population best.

f4

Iterations (1 - 200)

Finally, on f5 the algorithm was able to attain a best
value of 499.056335, compared to a liarget value of
500.0, on twenty out of twenty attempts. As seen in
Table 5, the system converged rapidly on this value.

n
U z 200

0

Iterations (1 -200)

6. DISCUSSION

The De Jong testbed is considered to be a reputable
and thorough suite of functions for testing the
robustness of an optimization algorithm. The results
reported in the preceding section demonstrate that
the binary particle swarm implementation is capable
of solving these various problems very rapidly. The
new version of the algorithm extends the capabilities
of the continuous-valued one; the present version is
able to optimize any function, continuous or discrete.

The five functions were implemented in a single
program, where the only code changed from one
function to another was the evaluation function. All
other aspects of the program, including parameter
values, ran identically on the various functions.
Thus it appears that the binary particle swarm is
extremely flexible and robust.

The most difficult functions were the first two, and
apparently for the same reason. Unlike evolutionary
algorithms, the particle swarm has “memory” of past
successes, and tends to converge upon regions of the
search space that have afforded success previously.
There is no mechanism for catastrophic leaps from
one region to another. Evolutionary algorithms
featuring crossover, however, combine aspects of the
parents in a way that allows leaps. In cases such as
neural networks, where many unique global optima
exist, this feature of genetic algorithms works against
them: two networks may be better than any
combination of their parts. The particle swarm
performs especially well on those kinds of problems.
On the other hand, where a leap from one region to a
distant other region is necessary, crossover is
probably the preferred operator. Note that the
particle swarm performed quite well on these first
two functions, consistently return very good

41 07

evaluations, but it had trouble jumping out of good
local optima.

7. REFERENCES

De Jong, K. A. (1975). An analysis of the behavior
of a class of genetic adaptive systems. Doctoral
dissertation, University of Michigan.

Eberhart, R. C., and Kennedy, J. (1995). A new
optimizer using particle swarm theory. Proc. Sixth
Intl. Symposium on Micro Machine and Human
Science (Nagoya, Japan), IEEE Service Center,
Piscataway, NJ, 39-43.

Eberhart, R. C., Dobbins, R. C, and Simpson, P.
(1996). Computational Intelligence PC Tools.
Boston: Academic Press.

Kennedy, J., and Eberhart, R. C. (1995). Particle
swarm optimization. Proc. IEEE Intl. Con$ on
Neural Networks (Perth, Australia), IEEE Service
Center, Piscataway, NJ, IV: 1942-1948.

Goldberg, D. E. (1989). Genetic Algorithms in
Search, Optimization, and Machine Learning.
Reading MA: Addison-Wesley.

Kennedy, J. (1997). The particle swarm: Social
adaptation of knowledge. Proc. IEEE Intl. Con$ on
Neural Networks (Indianapolis, Indiana), IEEE
Service Center, Piscataway, NJ, 303-308.

'C function code kindly provided by William Spears
at http://www.aic.nrl.navy.mil/
-spears/functs.dejong.html

41 08

http://www.aic.nrl.navy.mil

