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ABSTRACT 

The particle swarm algorithm adjusts the trajectories 
of a population of “particles” through a problem 
space on the basis of information about each 
particle’s previous best performance and the best 
previous performance of its neighbors. Previous 
versions of the particle swarm have operated in 
continuous space, where trajectories are defined as 
changes in position on some number of dimensions. 
The present paper reports a reworking of the 
algorithm to operate on discrete binary variables. In 
the binary version, trajectories are changes in the 
probability that a coordinate will take on a zero or 
one value. Examples, applications, and issues are 
discussed. 

1. INTRODUCTION 

The particle swarm algorithm (Eberhart and 
Kennedy, 1995; Eberhart, Dobbins, and Simpson, 
1996; Kennedy and Eberhart, 1995; Kennedy, 1997) 
has been introduced as an optimization technique for 
use in real-number spaces. A potential solution to a 
problem is represented as a particle having 
coordinates Xid and rate of change vd in a D-di- 
mensional space. Each particle i maintains a record 
of the position of its previous best performance in a 
vector called pid. An iteration comprises evaluation 
of each particle, then stochastic adjustment of Vid in 
the direction of particle i’s best previous position 
and the best previous position of any particle in the 
neighborhood. Neighborhoods can be defined in 
innumerable ways: most implementations evaluate a 
particle i in a neighborhood consisting of itself, 
particle i-1, and particle i+l, with arrays wrapped so 
i=l is beside i=N. The variable g is assigned the 
value of the index of the particle with the best 
performance so far in the neighborhood. Thus in the 
original version particles move by the following 
formula: 

“id = Yid + dPid - Xid) + dPgd - X i d )  

where cp is a random positive number generated for 
each id, whose upper limit is a parameter of the 
system, and: 

Xid = Xid + “id 

The particle swarm algorithm has been found to be 
robust in solving problems featuring nonlinearity and 
nondifferentiability, multiple optima, and high 
dimensionality through adaptation which is derived 
from social-psychological theory (Kennedy, 1997). 

2. DISCRETE SPACE 

Many optimization problems are set in a space 
featuring discrete, qualitative distinctions between 
variables and between levels of variables. Typical 
examples include problems which require the order- 
ing or arranging of discrete elements, as in schedul- 
ing and routing problems. Besides these pure 
combinatorial problems, researchers frequently cast 
floating-point problems in binary terms, and solve 
them in a discrete number space. As any problem, 
discrete or continuous, can be expressed in a binary 
notation, it is seen that an optimizer which operates 
on two-valued functions might be advantageous. 

The particle swarm works by adjusting trajectories 
through manipulation of each coordinate of a 
particle. At least some of the success of the algo- 
rithm in real numbered functions appears to derive 
from the fact that it “overflies” known local optima, 
exploring beyond as well as between them. The 
immediate question then is, what are the meanings of 
concepts such as trajectory, velocity, between, and 
beyond, in a discrete space. 

In a binary space, a particle may be seen to move to 
nearer and farther corners of the hypercube by 
flipping various numbers of bits; thus, velocity of the 
particle overall may be described by the number of 
bits changed per iteration, or the H a m n g  distance 
between the particle at time f and at r+l. A particle 
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with zero bits flipped does not move, while it moves 
the “farthest” by reversing all of its binary 
coordinates. This does not answer the question, 
however, of what corresponds to vi+ in a binary 
function, that is, what is the velocity or rate of 
change of a single bit or coordinate. 

The solution to this dilemma is to define trajectories, 
velocities, etc., in terms of changes of probabilities 
that a bit will be in one state or the other. Thus, a 
particle moves in a state space restricted to zero and 
one on each dimension, where eaclh Vid represents 
the probability of bit Xid taking the value 1. In other 
words, if Vid = 0.20, then there is a twenty percent 
chance that Xid will be a one, and an eighty percent 
chance it will be a zero. If the previous best 
positions have had a zero in that bit, then @id - Xid) 
can be reasonably calculated as -1, 0, or +1, and 
used to weight the change in probability Vid at the 
next step. 

In sum, the particle swarm formula: 

remains unchanged, except that now p d  and Xid are 
integers in (0, l }  and Vid, since it is a probability, 
must be constrained to the interval1 [O.O, 1.01. A 
logistic transformation s(Vid) can be used to accom- 
plish this last modification. The resulting change in 
position then is defined by the following rule: 

“id = Vid + (P(Pid - Xid) + HPgd - Xid) 

$(rand() < s(vid)) then Xid = 1; 
else Xid = 0 

where the function S(v) is a sigmoid limiting 
transformation and rand() is a quasirandom number 
selected from a uniform distribution in [O.O, 1.01. 

The continuous-valued particle swarm algorithm also 
limited v d  by a value V,, which ‘was a parameter 
of the system. In the discrete vlersion V,, is 
retained, that is, Ivid < V-, but as can be seen, this 
simply limits the ultimate probability that bit Xid will 
take on a zero or one value. For instance, if 
V d 6 . 0 ,  then probabilities will be limited to 
s(Vid), between 0.9975 and 0.0025.. The result of 
this is that new vectors will still be tried, even after 
each bit has attained its best position. Specifying a 
higher V,,, e.g., 10.0, makes new vectors less 
likely. Thus part of the function of V,, in the 
discrete particle swarm is to set a limit to further 
exploration after the population has converged; in a 
sense, it could be said to control the ultimate 
mutation rate or temperature of the bit vector. Note 
also that, while high V,, in the continuous-valued 
version increases the range explorad by a particle, 
the opposite occurs in the binary version; smaller 
V,, allows a higher mutation rate. 

3. A CHANGE IN THE MEANING OF 
CHANGE OF CHANGE 

The revision of the particle swarm algorithm from a 
continuous to a discrete operation may be more 
fundamental than the simple coding changes would 
imply. The floating-point algorithm operated 
through a stochastic change in the rate of change of 
position. The original 

seems very different from 
Xid = Xid + Vid 

$(rand() < S(vid)) then xid = 1; 
else Xid = 0. 

The difference of course lies in the interpretation of 
the concept of the “change of change” that is central 
to the continuous-valued version. In the original, 
trajectories were adjusted by altering the velocity or 
rate of change of position, as distinguished from 
previous algorithms where the actual position of the 
particle is adjusted (Goldberg, 1989). In the present 
discrete version, however, it appears that with Vid 
functioning as a probability threshold, changes in vid 
might represent a change in first-order position itself. 
As s(Vid) approaches zero, for instance, the 
“position” of the particle fixes more probably on the 
value 0, with less chance of change. 

Trajectory in the current model is probabilistic, and 
velocity on a single dimension is the probability that 
a bit will change; thus even if Vid should remain 
fixed, the “position” of the particle on that 
dimension remains dynamic as it flips polarity with 
probability following from the value of vid 

The probability that a bit will be a one = s(Vid), and 
the probability that it will be a zero = 1 - s(Vid). 
Further, if it is a zero already, then the probability 
that it will change = s(Vid), and if it is a one the 
probability it will change = 1 - s(Vid). Thus we can 
see that the probability of the bit changing is given 
by: 

which is equivalent to saying 

which is the absolute (nondirectional) rate of change 
for that bit given a value of v s  Thus change in Yid 
is still a change in the rate of change, with a new 
interpretation. 

PfA) = SfVid) (1 - s(vjd)), 

P(A) = s(vid) - s(vid? 

4. REPRESENTATIONS AS PROBABILITIES 

In the previous version of the particle swarm 
algorithm, as in other evolutionary computation 
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paradigms, individuals is a population represent 
potential problem solutions. Individuals are 
evaluated, changed in some way or replaced, and 
tested again; adaptation occurs as the fitnesses of 
individual problem solutions increase. 

In the present method, population members are not 
viewed as potential solutions: they are probabilities. 
The value of vd for each dimension determines the 
probability that a bit Xid will take on one or the other 
value, but Xid itself does not have a value until it is 
evaluated: the actual position of the particle in D 
dimensional space is ephemeral. An individual 
particle i with a particular vector vid might have a 
different position xid at every iteration. In this way 
the particle swarm differs from any optimization 
paradigm currently known. 

5. IMPLEMENTATION IN A CLASSIC 
.TESTBED 

De Jong’s (1975) suite of five test functions was 
designed to test a carefully constructed set of di- 
mensions of performance of an optimizer. Code for 
these five functions was provided through the 
Internet by William Spears*, and altered for integra- 
tion with the present paradigm. In some cases it 
appears that the optimum can only be approximated 
within several decimal places, due to the imprecision 
of the binary encoding. 

The functions were run twenty times each, with a 
population of 20 and V,, set at 6.0. Graphs show 
the mean best performance, measured on every tenth 
iteration. 

As seen in Figure 1, the particle swarm converged 
quickly on the optimum for f l .  The target output 
value was 78.60, though in any trial the closest the 
particle swarm was able to come was 78.599998, 
which it found on ten of the twenty trials. It is 
presumed that the difference between the found 
optimum and the target is due to insufficient 
precision in the binary encoding, rather than a failure 
of the algorithm to hit the target. 

80 

5 75 
n c. 

70 

65 

f l  

Iterations (1 - 200) 

On the second function, f2, the particle swarm was 
able to attain a best value of 3905.929932, compared 
to a given target of 3905.93; again, the difference is 
thought to derive from the precision of the encoding, 
rather than the algorithm. 

F2 is the hardest of the functions for the particle 
swarm. The system converged on the best known 
optimum four times in this set of twenty. The 
hardness of the function might be explained by the 
existence of very good local optima in regions which 
are distant from the best known optimum. For 
instance, the local optimum: 

returns a value of 3905.929688, while the vector: 

returns 3905.929443, and 

returns 3905.924561. 

010111111101111000000111 

110111101001110111011111 

1 1 1 m 1 1 0 0 1 0 1 1 0 0 1 m 1  

The best known optimum, returning 3905.929932, is 
found at: 

110111101110110111101001, 
which is a Hamming distance of 12 (in a 24-element 
bit string) from the first local optimum given above, 
7 from the second (rather close), and 15 from the 
third. Thus, there is very little chance that a search 
would move from one of the local optima to the 
global optimum. This kind of problem is probably 
better handled by a genetic algorithm with one- or 
two-point crossover, where long blocks of the parent 
vector are swapped in their entirety into the child. 
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f2  f5 

3908 

3906 

3900 

3898 

I terations (1 -200) 

The third function, f3, is an integer function with a 
target value of 55, which was attained on every trial, 
as shown in figure 3. 

f3 

Iterations (1-200) 

De Jong’s f4 function introduces gaussian noise to 
the function, and was measured as an average over 
the entire population, rather than a population best. 

f4 

Iterations (1 - 200) 

Finally, on f5 the algorithm was able to attain a best 
value of 499.056335, compared to a liarget value of 
500.0, on twenty out of twenty attempts. As seen in 
Table 5, the system converged rapidly on this value. 

n 
U z 200 

0 

Iterations (1 -200) 

6. DISCUSSION 

The De Jong testbed is considered to be a reputable 
and thorough suite of functions for testing the 
robustness of an optimization algorithm. The results 
reported in the preceding section demonstrate that 
the binary particle swarm implementation is capable 
of solving these various problems very rapidly. The 
new version of the algorithm extends the capabilities 
of the continuous-valued one; the present version is 
able to optimize any function, continuous or discrete. 

The five functions were implemented in a single 
program, where the only code changed from one 
function to another was the evaluation function. All 
other aspects of the program, including parameter 
values, ran identically on the various functions. 
Thus it appears that the binary particle swarm is 
extremely flexible and robust. 

The most difficult functions were the first two, and 
apparently for the same reason. Unlike evolutionary 
algorithms, the particle swarm has “memory” of past 
successes, and tends to converge upon regions of the 
search space that have afforded success previously. 
There is no mechanism for catastrophic leaps from 
one region to another. Evolutionary algorithms 
featuring crossover, however, combine aspects of the 
parents in a way that allows leaps. In cases such as 
neural networks, where many unique global optima 
exist, this feature of genetic algorithms works against 
them: two networks may be better than any 
combination of their parts. The particle swarm 
performs especially well on those kinds of problems. 
On the other hand, where a leap from one region to a 
distant other region is necessary, crossover is 
probably the preferred operator. Note that the 
particle swarm performed quite well on these first 
two functions, consistently return very good 
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evaluations, but it had trouble jumping out of good 
local optima. 
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'C function code kindly provided by William Spears 
at http://www.aic.nrl.navy.mil/ 
-spears/functs.dejong.html 
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